Add like
Add dislike
Add to saved papers

Aquatic treadmill water level influence on pelvic limb kinematics in cranial cruciate ligament-deficient dogs with surgically stabilised stifles.

OBJECTIVE: To compare pelvic limb joint kinematics and temporal gait characteristics during land-based and aquatic-based treadmill walking in dogs that have undergone surgical stabilisation for cranial cruciate ligament deficiency.

MATERIALS AND METHODS: Client-owned dogs with surgically stabilised stifles following cranial cruciate ligament deficiency performed three walking trials consisting of three consecutive gait cycles on an aquatic treadmill under four water levels. Hip, stifle and hock range of motion; peak extension; and peak flexion were assessed for the affected limb at each water level. Gait cycle time and stance phase percentage were also determined.

RESULTS: Ten client-owned dogs of varying breeds were evaluated at a mean of 55·2 days postoperatively. Aquatic treadmill water level influenced pelvic limb kinematics and temporal gait outcomes. Increased stifle joint flexion was observed as treadmill water level increased, peaking when the water level was at the hip. Similarly, hip flexion increased at the hip water level. Stifle range of motion was greatest at stifle and hip water levels. Stance phase percentage was significantly decreased when water level was at the hip.

CLINICAL SIGNIFICANCE: Aquatic treadmill walking has become a common rehabilitation modality following surgical stabilisation of cranial cruciate ligament deficiency. However, evidence-based best practice guidelines to enhance stifle kinematics do not exist. Our findings suggest that rehabilitation utilising a water level at or above the stifle will achieve the best stifle kinematics following surgical stifle stabilisation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app