Add like
Add dislike
Add to saved papers

A novel dihydrocoumarin under experimental and theoretical characterization.

Coumarins are natural and synthetic active ingredients widely applied in diverse types of medicinal treatments, such as cancer, inflammation, infection, and enzyme inhibition (monoamine oxidase B). Dihydrocoumarin compounds are of great interest in organic chemistry due to their structural versatilities and, as part of our investigations concerning the structural characterization of small molecules, this work focuses on crystal structure and spectroscopic characterization of the synthesized and crystallized compound 4-(4-methoxyphenyl)-3,4-dihydro-chromen-2-one (C16 H14 O3 ). Additionally, a theoretical calculation was performed using density functional theory to analyze the sites where nucleophilic or electrophilic attack took place and to examine the molecular electrostatic potential surface. Throughout all of these calculations, both density functional theory and Car-Parrinello molecular dynamics were performed by fully optimized geometry. The spectroscopic analysis indicated the presence of aromatic carbons and hydrogen atoms, and also the carbonyl and methoxy groups that were confirmed by the crystallographic structure. The C16 H14 O3 compound has a non-classical intermolecular interaction of type C-H⋅⋅⋅O that drives the molecular arrangement and the crystal packing. Moreover, the main absorbent groups were characterized throughout calculated harmonic vibrational frequencies. Also, natural bond orbital analysis successfully locates the molecular orbital with π-bonding symmetry and the molecular orbital with π* antibonding symmetry. Finally, the gap between highest occupied and lowest unoccupied molecular orbitals implies in a high kinetic stability and low chemical reactivity of title molecule.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app