Add like
Add dislike
Add to saved papers

Tuneable dielectric and optical characteristics of tailor-made inorganic electro-chromic materials.

Scientific Reports 2017 October 19
Electro-chromic materials (EC) are a new class of electronically reconfigurable thin films that have the ability to reversibly change optical properties by electric charge insertion/extraction. Since their discovery by Deb, they have been employed in applications related to display technology, such as smart windows and mirrors and active optical filters. In this sense, a variety of studies related to the tuneable optical characteristics of EC materials have recently been reported, however, their microwave tuneable dielectric characteristics have been left somewhat unexplored. In 2016 Bulja showed that dc bias voltage induced modulation of the optical characteristics of an inorganic Conductor/WO3/LiNbO3/NiO/Conductor EC cell isaccompanied by the modulation of its high frequency (1-20 GHz) dielectric characteristics. In general, according to the state of the art, cells of different material compositions are needed to produce devices of tailor made characteristics. Here, we report the discovery that the microwave dielectric and the optical characteristics of an EC cell can be engineered to suit a variety of applications without changing their material composition. The obtained results indicate the potential for producing novel, tuneable and tailor-engineered materials that can be used to create next generation agile microwave-optical devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app