Add like
Add dislike
Add to saved papers

Impact of heavy metal lead stress on polyamine levels in Halomonas BVR 1 isolated from an industry effluent.

Scientific Reports 2017 October 19
In living systems, environmental stress due to biotic and abiotic factors triggers the production of myriad metabolites as a potential mechanism for combating stress. Among these metabolites are the small polycationic aliphatic amine molecules - polyamines, which are ubiquitous in all living organisms. In this work, we demonstrate a correlation between cellular concentration of three major polyamines (putrescine, spermidine and spermine) with lead exposure on bacteria for a period of 6-24 h. We report that indigenously isolated Halomonas sp. strain BVR 1 exhibits lead induced fluctuations in their cellular polyamine concentration. This response to lead occurs within 6 h post metal treatment. During the same time interval there was a surge in the growth of bacteria along with an enhancement in the putrescine levels. We conclude that in Halomonas sp. strain BVR 1, an early response is seen with respect to modulation of polyamines as a result of lead treatment and hypothesize that endogenous polyamines contribute towards scavenging lead in these bacteria.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app