JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Amphiphilic Modulation of Glycosylated Antitumor Ether Lipids Results in a Potent Triamino Scaffold against Epithelial Cancer Cell Lines and BT474 Cancer Stem Cells.

The problems of resistance to apoptosis-inducing drugs, recurrence, and metastases that have bedeviled cancer treatment have been attributed to the presence of cancer stem cells (CSCs) in tumors, and there is currently no clinically indicated drug for their eradication. We previously reported that glycosylated antitumor ether lipids (GAELs) display potent activity against CSCs. Here, we show that by carefully modulating the amphiphilic nature of a monoamine-based GAEL, we can generate a potent triamino scaffold that is active against a panel of hard-to-kill epithelial cancer cell lines (including triple-negative breast) and BT474 CSCs. The most active compound of this set, which acts via a nonmembranolytic, nonapoptotic caspase-independent mechanism, is more effective than cisplatin and doxorubicin against these cell lines and more potent than salinomycin against BT474 CSCs. Understanding the combination of factors crucial for the enhanced cytotoxicity of GAELs opens new avenues to develop potent compounds against drug-resistant cancer cells and CSCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app