Add like
Add dislike
Add to saved papers

Stabilization of the Cubic Crystalline Phase in Organometal Halide Perovskite Quantum Dots via Surface Energy Manipulation.

Surface functionalization of nanoscale materials has a significant impact on their properties. We have demonstrated the effect of different passivating ligands on the crystal phase of organometal halide perovskite quantum dots (PQDs). Using static and dynamic spectroscopy, we studied phase transitions in CH3 NH3 PbBr3 PQDs ligated with either octylaminebromide (P-OABr) or 3-aminopropyl triethoxysilane (P-APTES). Around 140 K, P-OABr underwent a structural phase transition from tetragonal to orthorhombic, established by the emergence of a higher energy band in the photoluminescence (PL) spectrum. This was not observed in P-APTES, despite cooling down to 20 K. Additionally, time-resolved and excitation power-dependent PL, as well as Raman spectroscopy over a range of 300-20 K, revealed that recombination rates and types of charge carriers involved are significantly different in P-APTES and P-OABr. Our findings highlight how aspects of PQD phase stabilization are linked to nanoscale morphology and the crystal phase diagram.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app