Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Rate of Lipid Peroxyl Radical Production during Cellular Homeostasis Unraveled via Fluorescence Imaging.

Reactive oxygen species (ROS) and their associated byproducts have been traditionally associated with a range of pathologies. It is now believed, however, that at basal levels these molecules also have a beneficial cellular function in the form of cell signaling and redox regulation. Critical to elucidating their physiological role is the opportunity to visualize and quantify the production of ROS with spatiotemporal accuracy. Armed with a newly developed, extremely sensitive fluorogenic α-tocopherol analogue (H4 BPMHC), we report herein the observation of steady concentrations of lipid peroxyl radicals produced in live cell imaging conditions. Imaging studies with H4 BPMHC indicate that the rate of production of lipid peroxyl radicals in HeLa cells under basal conditions is 33 nM/h within the cell. Our work further provides indisputable evidence on the antioxidant role of Vitamin E, as lipid peroxidation was suppressed in HeLa cells both under basal conditions and in the presence of Haber-Weiss chemistry, generated by the presence of cumyl hydroperoxide and Cu2+ in solution, when supplemented with the α-tocopherol surrogate, PMHC (2,2,5,7,8-pentamethyl-6-hydroxy-chromanol, an α-tocopherol analogue lacking the phytyl tail). H4 BPMHC has the sensitivity needed to detect trace changes in oxidative status within the lipid membrane, underscoring the opportunity to illuminate the physiological relevance of lipid peroxyl radical production during cell homeostasis and disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app