Add like
Add dislike
Add to saved papers

Boosting the Visible-Light Photoactivity of BiOCl/BiVO 4 /N-GQD Ternary Heterojunctions Based on Internal Z-Scheme Charge Transfer of N-GQDs: Simultaneous Band Gap Narrowing and Carrier Lifetime Prolonging.

The efficient separation of photogenerated electron-hole pairs in photoactive materials is highly desired, allowing their transfer to specific sites for undergoing redox reaction in various applications. The construction of ternary heterojunctions is a practical strategy to enhance the migration of photogenerated electron that realizes the synergistic effect of multicomponents rather than the simple overlay of single component. Here, we demonstrate an available way to fabricate new BiOCl/BiVO4 /nitrogen-doped graphene quantum dot (N-GQD) ternary heterojunctions that exhibit higher efficiency in charge separation than any binary heterojunction or pure material under visible-light irradiation. UV-vis diffuse reflectance spectroscopy demonstrated that the proposed BiOCl/BiVO4 /N-GQD ternary heterojunctions possess the narrower band gap energy. More importantly, the ternary heterojunctions reveal the prolonged lifetime of photogenerated charges and enhanced the separation efficiency of photogenerated electron-hole pairs, which may be ascribed to sensitization based on an internal Z-scheme charge transfer at the interface of N-GQDs with oxygen functional groups. Furthermore, we examine the photoactive performance of proposed ternary heterojunctions in aqueous solution by using the photodegradation of bisphenol A as a model system and BiOCl/BiVO4 /N-GQD ternary heterojunctions also display a dramatically enhanced photodegradation rate. The proposed charge separation and transfer process of BiOCl/BiVO4 /N-GQD ternary heterojunctions for the enhanced photoactivity were deduced by electrochemical measurements, photoluminescence, and electron spin resonance. The results demonstrate that a Z-scheme charge process was formed between BiOCl/BiVO4 binary heterojunctions and N-GQDs, leading to an efficient charge carrier separation and strong photocatalytic ability. Notably, this work may assist in a better understanding of the role of N-GQDs in kinds of heterojunctions. Conceivably, it can be extended to fabricate other photocatalytic systems and photoelectrochemical platforms associated with photoactive materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app