Add like
Add dislike
Add to saved papers

Dancing with the Stars: Using Image Analysis to Study the Choreography of the Endoplasmic Reticulum and Its Partners and of Movement Within Its Tubules.

In this chapter, approaches to the image analysis of the choreography of the plant endoplasmic reticulum (ER) labeled with fluorescent fusion proteins ("stars," if you wish) are presented. The approaches include the analyses of those parts of the ER that are attached through membrane contact sites to moving or nonmoving partners (other "stars"). Image analysis is also used to understand the nature of the tubular polygonal network, the hallmark of this organelle, and how the polygons change over time due to tubule sliding or motion. Furthermore, the remodeling polygons of the ER interact with regions of fundamentally different topology, the ER cisternae, and image analysis can be used to separate the tubules from the cisternae. ER cisternae, like polygons and tubules, can be motile or stationary. To study which parts are attached to nonmoving partners, such as domains of the ER that form membrane contact sites with the plasma membrane/cell wall, an image analysis approach called persistency mapping has been used. To study the domains of the ER that are moving rapidly and streaming through the cell, the image analysis of optic flow has been used. However, optic flow approaches confuse the movement of the ER itself with the movement of proteins within the ER. As an overall measure of ER dynamics, optic flow approaches are of value, but their limitation as to what exactly is "flowing" needs to be specified. Finally, there are important imaging approaches that directly address the movement of fluorescent proteins within the ER lumen or in the membrane of the ER. Of these, fluorescence recovery after photobleaching (FRAP), inverse FRAP (iFRAP), and single particle tracking approaches are described.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app