Add like
Add dislike
Add to saved papers

Reporter-Based Synthetic Genetic Array Analysis: A Functional Genomics Approach for Investigating Transcript or Protein Abundance Using Fluorescent Proteins in Saccharomyces cerevisiae.

Fluorescent reporter genes have long been used to quantify various cell features such as transcript and protein abundance. Here, we describe a method, reporter synthetic genetic array (R-SGA) analysis, which allows for the simultaneous quantification of any fluorescent protein readout in thousands of yeast strains using an automated pipeline. R-SGA combines a fluorescent reporter system with standard SGA analysis and can be used to examine any array-based strain collection available to the yeast community. This protocol describes the R-SGA methodology for screening different arrays of yeast mutants including the deletion collection, a collection of temperature-sensitive strains for the assessment of essential yeast genes and a collection of inducible overexpression strains. We also present an alternative pipeline for the analysis of R-SGA output strains using flow cytometry of cells in liquid culture. Data normalization for both pipelines is discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app