Clinical Trial, Phase II
Clinical Trial, Phase III
Journal Article
Randomized Controlled Trial
Add like
Add dislike
Add to saved papers

Population pharmacokinetics of trastuzumab emtansine in previously treated patients with HER2-positive advanced gastric cancer (AGC).

PURPOSE: Ado-trastuzumab emtansine (T-DM1) is an antibody-drug conjugate comprising trastuzumab conjugated via a stable thioether linker to DM1, a highly potent cytotoxic agent. A population pharmacokinetics (PK) analysis was performed to characterize T-DM1 PK and evaluate the impact of patient characteristics on T-DM1 PK in previously treated patients with HER2-positive advanced gastric cancer (AGC).

METHODS: Following T-DM1 weekly or every three weeks dosing, T-DM1 concentration measurements (n = 780) were collected from 136 patients in the GATSBY (NCT01641939) study and analyzed using nonlinear mixed effects modeling. The influence of demographic, baseline laboratory, and disease characteristics on T-DM1 PK was examined.

RESULTS: T-DM1 PK was best described by a two-compartment model with parallel linear and nonlinear (Michaelis-Menten) elimination from the central compartment. The final population model estimated linear clearance (CL) of 0.79 L/day, volume of distribution in the central compartment (Vc ) of 4.48 L, distribution clearance (Q) of 0.62 L/day, volume of distribution in the peripheral compartment (Vp ) of 1.49 L, nonlinear CL of 2.06 L/day, and KM of 1.63 μg/mL. Parameter uncertainty was low to moderate for fixed effects, except KM (estimated with poor precision). Patients with high body weight and low baseline trastuzumab concentrations had significantly faster linear CL; those with higher body weight had significantly larger Vc .

CONCLUSIONS: In a HER2-positive AGC population, T-DM1 PK was best described by a two-compartment model with parallel linear and nonlinear elimination. Baseline body weight and trastuzumab concentration were identified as significant covariates for T-DM1 PK in a HER2-positive AGC population.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app