Add like
Add dislike
Add to saved papers

Contrasting water adhesion strengths of hydrophobic surfaces engraved with hierarchical grooves: lotus leaf and rose petal effects.

Nanoscale 2017 November 3
The (de)wetting transitions of hierarchical grooves periodically engraved on a hydrophobic surface were investigated using a fully atomistic molecular dynamics simulation. The (meta) stable and transition states with sagging or depinning liquid surfaces were identified by calculating the free energy profiles of the (de)wetting transitions. The dewetting transitions for wide and narrow minor grooves have large and small activation free energies, respectively, exhibiting contrasting water adhesion forces as found for rose petals and lotus leaves.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app