Add like
Add dislike
Add to saved papers

Tailoring the input impedance of FeCo/C composites with efficient broadband absorption.

Proper impedance matching and strong attenuation capabilities are crucial factors for an excellent microwave absorbent. Significant attention and effort have been focused on the attenuation capabilities, whereas little attention has been paid to impedance matching, which is particularly important to design broadband absorbing materials. In this study, coin-like porous FeCo/C composites were successfully prepared by a simple carbon thermal reduction method. The Zin /Zo values of the FeCo/C composites were calculated to investigate the effects of the Fe/Co molar ratio and structure on the impedance matching. The results show that the coin-like porous samples were equipped with optimal impedance matching (Zin /Zo ≈ 1) and broad frequency bandwidth. The coin-like porous structure can induce multiple scattering and extend the travel path of the waves, which is in favour of electromagnetic loss. In this way, the effective frequency bandwidth (RL < -10 dB) as large as 6 GHz (from 11.36 to 17.36 GHz) has been achieved at a thickness of 2 mm when the Fe/Co molar ratio is 4 : 6. In addition, the average frequency broadband reached 5.57 GHz in the thickness range of 2-2.6 mm. We believe that this study may provide a new strategy for tuning the impedance matching for optimal broadband absorbers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app