Add like
Add dislike
Add to saved papers

Hesperetin alleviates renal interstitial fibrosis by inhibiting tubular epithelial-mesenchymal transition in vivo and in vitro .

Hesperetin (HES) is a flavonoid that has been reported to exert protective effects against cardiac remodeling, lung fibrosis and hepatic fibrosis. However, reports on the effects and potential mechanisms of HES in renal fibrosis are limited. In the present study, a unilateral ureteric obstruction (UUO) mouse model and a transforming growth factor (TGF)-β1-activated normal rat kidney (NRK)-52E cell model were established. HES was subsequently administered to these models to evaluate its anti-fibrotic effects and potential underlying mechanisms of action. The results demonstrated that HES reduced obstruction-induced renal injury and deposition of the extracellular matrix components collagen-I and fibronectin in UUO mouse kidneys (P<0.05). Furthermore, HES treatment significantly suppressed EMT, as evidenced by decreased expression of α-smooth muscle actin and E-cadherin, (P<0.05). Additionally, HES inhibited the hedgehog signaling pathway in UUO mice and TGF-β1-treated NRK-52E cells. The present findings indicate that HES treatment may inhibit EMT and renal fibrosis in vivo and in vitro by antagonizing the hedgehog signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app