Add like
Add dislike
Add to saved papers

IL-12 stimulates CTLs to secrete exosomes capable of activating bystander CD8 + T cells.

Scientific Reports 2017 October 18
An effective cytotoxic T lymphocyte (CTL) response against intracellular pathogens is generally accomplished by immense CTL expansion and activation, which can destroy infected cells. Vigorous immune responses can lead to activation of bystander CD8+ T cells, but the contribution from antigen-specific CTLs is not well understood. We found that CTLs secrete extracellular vesicles following antigen stimulation. These CTL-derived vesicles contain CTL proteins and exhibit markers and size profiles consistent with exosomes. Interestingly, further stimulation of CTLs with IL-12 impacts exosome size and leads to selective enrichment of certain exosomal proteins. More important, exosomes from IL-12-stimulated CTLs directly activated bystander naïve CD8+ T cells to produce interferon-γ (IFNγ) and granzyme B (GZB) in the absence of antigens, whereas control exosomes derived from antigen-stimulated CTLs did not. In addition, IL-12 induced exosomes are able to strengthen the effects of weak antigen stimulation on CTLs. Proteomic analysis demonstrates that IL-12 stimulation alters catalytic and binding activities of proteins in CTL exosomes. Our findings indicate that the biological function and morphology of exosomes secreted by CTLs can be influenced by the type of stimulation CTLs receive. Thus, a fully functional, ongoing, antigen-specific CTL response may influence bystander CD8+ T cells through secretion of exosomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app