Add like
Add dislike
Add to saved papers

Radiation Resistance of Silicon Carbide Schottky Diode Detectors in D-T Fusion Neutron Detection.

Scientific Reports 2017 October 18
Silicon carbide (SiC) is a wide band-gap semiconductor material with many excellent properties, showing great potential in fusion neutron detection. The radiation resistance of 4H-SiC Schottky diode detectors was studied experimentally by carefully analyzing the detectors' properties before and after deuterium-tritium fusion neutron irradiation with the total fluence of 1.31 × 1014  n/cm2 and 7.29 × 1014  n/cm2 at room temperature. Significant degradation has been observed after neutron irradiation: reverse current increased greatly, over three to thirty fold; Schottky junction was broken down; significant lattice damage was observed at low temperature photoluminescence measurements; the peaks of alpha particle response spectra shifted to lower channels and became wider; the charge collection efficiency (CCE) decreased by about 7.0% and 22.5% at 300 V with neutron irradiation fluence of 1.31 × 1014  n/cm2 and 7.29 × 1014  n/cm2 , respectively. Although the degradation exists, the SiC detectors successfully survive intense neutron radiation and show better radiation resistance than silicon detectors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app