Add like
Add dislike
Add to saved papers

Knot Energy, Complexity, and Mobility of Knotted Polymers.

Scientific Reports 2017 October 18
The Coulomb energy EC is defined by the energy required to charge a conductive object and scales inversely to the self-capacity C, a basic measure of object size and shape. It is known that C is minimized for a sphere for all objects having the same volume, and that C increases as the symmetry of an object is reduced at fixed volume. Mathematically similar energy functionals have been related to the average knot crossing number 〈m〉, a natural measure of knot complexity and, correspondingly, we find EC to be directly related to 〈m〉 of knotted DNA. To establish this relation, we employ molecular dynamics simulations to generate knotted polymeric configurations having different length and stiffness, and minimum knot crossing number values m for a wide class of knot types relevant to the real DNA. We then compute EC for all these knotted polymers using the program ZENO and find that the average Coulomb energy 〈EC 〉 is directly proportional to 〈m〉. Finally, we calculate estimates of the ratio of the hydrodynamic radius, radius of gyration, and the intrinsic viscosity of semi-flexible knotted polymers in comparison to the linear polymeric chains since these ratios should be useful in characterizing knotted polymers experimentally.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app