Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Mammalian Numb protein antagonizes Notch by controlling postendocytic trafficking of the Notch ligand Delta-like 4.

The biological antagonism between the signaling proteins Numb and Notch has been implicated in the regulation of many developmental processes, especially in asymmetric cell division. Mechanistic studies show that Numb inactivates Notch via endocytosis and proteasomal degradation that directly reduce Notch protein levels at the cell surface. However, some aspects of how Numb antagonizes Notch remain unclear. Here, we report a novel mechanism in which Numb acts as a Notch antagonist by controlling the intracellular destination and stability of the Notch ligand Delta-like 4 (Dll4) through a postendocytic-sorting process. We observed that Numb/Numblike knockdown increases the stability and cell-surface accumulation of Dll4. Further study indicated that Numb acts as a sorting switch to control the postendocytic trafficking of Dll4. Of note, the Numb/Numblike knockdown decreased Dll4 delivery to the lysosome, while increasing the recycling of Dll4 to the plasma membrane. Moreover, we demonstrate that this enrichment of Dll4 at the cell surface within Numb/Numblike knockdown cells could activate Notch signaling in neighboring cells. We also provide evidence that Numb negatively controls the Dll4 plasma membrane recycling through a well-documented recycling regulator protein AP1. In conclusion, our study has uncovered a molecular mechanism whereby Numb regulates the endocytic trafficking of the Notch ligand Dll4. Our findings provide a new perspective on how Numb counteracts Notch signaling and sheds additional critical insights into the antagonistic relationship between Numb and Notch signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app