Add like
Add dislike
Add to saved papers

MiR-455-3p activates Nrf2/ARE signaling via HDAC2 and protects osteoblasts from oxidative stress.

BACKGROUND: The important role of miR-455-3p in the pathogenesis of bone metabolism associated diseases is gradually emerging. This study aims to ascertain the involvement of miR-455-3p and its underlying mechanisms in osteoporosis.

METHODS: The osteoblast cell lines MC3T3-E1 was treated with ferric ammonium citrate (FAC) to mimic a pathological environment for osteoporosis. The cytotoxic effect of iron overload was assessed by proliferation, apoptosis and oxidative stress of osteoblasts using commercial kits. Molecular biological methods, including qRT-PCR analysis, cell transfection and luciferase reporter assays were used to explain the role of miR-455-3p and its potential mechanisms in osteoblast apoptosis.

RESULTS: FAC dramatically inhibited the proliferation of osteoblast cells MC3T3-E1 but increased the apoptosis. We also observed that FAC significantly down-regulated miR-455-3p in MC3T3-E1 cells but enhanced HDAC2 protein level. Moreover, miR-455-3p overexpression eliminated the effects of iron overload on osteoblast cell proliferation, apoptosis and oxidative stress. In addition, miR-455-3p regulated osteoblast cell proliferation, apoptosis and oxidative stress through regulating HDAC2-Nrf2/ARE signaling pathway. MiR-455-3p overexpression alleviated the oxidative stress injury in osteoporosis mice.

CONCLUSION: Our results demonstrated that miR-455-3p activated Nrf2/ARE signal pathway through suppressing Keap1 via negative regulating HDAC2 protein level, thereby suppressing oxidative stress and promoting osteoblasts growth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app