Add like
Add dislike
Add to saved papers

Murine genetic variance in muscarinic cholinergic receptor antagonism of sucrose and saccharin solution intakes in three inbred mouse strains.

Nutritive (e.g., sucrose) and non-nutritive (e.g., saccharin) sweeteners stimulate intake in inbred mouse strains. BALB/c, SWR and C57BL/6 mice differ in the ability of dopamine (DA) D1 (SCH23390) and opioid (naltrexone) receptor antagonism to alter sucrose intake. Whereas SCH23390 comparably reduced cumulative sucrose intake in all three strains, naltrexone reduced cumulative sucrose intake maximally in C57/BL/6 mice, in intermediate fashion in BALB/c mice, but not in SWR mice. Whereas cumulative saccharin intake was reduced by DA D1 receptor antagonism in BALB/c and SWR mice, naltrexone was more potent in SWR relative to BALB/c mice. The present study first examined whether SCH23390 (50-1600nmol/kg) and naltrexone (0.01-5mg/kg) altered saccharin intake in C57BL/6 mice. Given that scopolamine (SCOP), a muscarinic cholinergic receptor antagonist, reduces sweet intake in outbred rats, a second experiment examined whether SCOP (0.1-10mg/kg) altered 0.2% saccharin and 10% sucrose intakes in BALB/c, SWR and C57BL/6 mice. Cumulative saccharin intake was significantly reduced by SCH23390 (200-1600nmol/kg; ID40 =175nmol/kg) and naltrexone (0.1-5mg/kg; ID40 >5mg/kg) in C57BL/6 mice. Cumulative sucrose intake was significantly reduced following SCOP in C57BL/6 (0.1-10mg/kg; ID40 =2.32mg/kg) and BALB/c (2.5-10mg/kg; ID40 =0.52mg/kg) mice. In contrast, SWR mice (ID40 =41.61mg/kg) only displayed transient (15min) reductions in sucrose intake following SCOP (2.5-10mg/kg). Cumulative saccharin intake was significantly reduced following SCOP in C57BL/6 and BALB/c mice (0.1-10mg/kg; ID40 <0.1mg/kg). In contrast, SWR mice (ID40 =2.28mg/kg) displayed smaller significant reductions in saccharin intake following SCOP (0.1-10mg/kg). These data indicate that although both nutritive and non-nutritive sweet intakes are governed by muscarinic cholinergic receptor signaling, this process is subject to murine genetic variance with greater sensitivity observed in C57BL/6 and BALB/c relative to SWR inbred mouse strains.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app