Add like
Add dislike
Add to saved papers

Surface plasmon resonance biosensor based on gold-coated side-polished hexagonal structure photonic crystal fiber.

Optics Express 2017 August 22
The refractive index sensing characteristics of the side-polished photonic crystal fiber (PCF) surface plasmon resonance (SPR) sensor are detailed investigated in this paper. We used the finite element method (FEM) to study the influences of the side-polished depth, air hole size, lattice constant, and the refractive index (RI) of the PCF material on sensing performance. The simulation results show that the side-polished depth, air hole size, lattice pitch have significant influence on the coupling strength between core mode and surface plasmon polaritons (SPPs), but have little influence on sensitivity; the coupling strength and sensitivity will significant increase with the decrease of RI of the PCF material. The sensitivity of the D-shaped PCF sensor is obtained to be as high as 21700 nm/RIU in the refractive index environment of 1.33-1.34, when the RI of the PCF material is controlled at 1.36. It revealed a new method of making ultra-high sensitivity SPR fiber sensor. Then we experimental demonstrated a SPR refractive sensor based on the side-polished single mode PCF and investigated the sensing performance. The experimental results of the plasmon resonance wavelength sensitivity agree well with the theoretical results. The presented gold-coated D-shaped PCF SPR sensor could be used as a simple, cost-effective, high sensitivity device in bio-chemical detection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app