Add like
Add dislike
Add to saved papers

Discrete solitons in optical fiber systems with large pre-dispersion.

Optics Express 2017 August 22
With the aid of a discrete nonlinear Schrödinger equation (NLSE), the nonlinear interaction among the periodically placed ultrashort pulses is analyzed. If the amplitudes of these pulses are chosen to be secant-hyperbolic, it is found that they propagate without exchanging energy and hence the envelope of the peak of the short pulses is termed the discrete soliton in analogy with its counterpart in the spatial domain. In addition, we develop the concept of discrete chirp transform (DChT) and its inverse, and show that the weights of the pulses can be extracted from the field envelope using the discrete chirp transform (DChT). The computational cost of evaluating the output of a linear dispersive fiber using DChT approach is nearly half of the conventional frequency domain approach based on fast Fourier transform (FFT). We found that an isolated pump sinc pulse is not stable and it generates temporally separated sinc pulses if the dispersion of the transmission fiber is anomalous. By choosing a proper time separation between signal pulse and pump pulse, it is possible to amplify the signal pulse. The nonlinear interaction between signal pulse and pump pulse generates an idler pulse that is a phase-conjugated copy of the signal pulse. Hence, this result could have potential applications for time domain optical amplification and phase-conjugation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app