Add like
Add dislike
Add to saved papers

Electrically controlled Mie-resonance absorber.

Optics Express 2017 September 19
An electrically controlled metamaterial perfect absorber (MPA) based on Mie resonance is demonstrated experimentally and modeled numerically. A ceramic dielectric cube is adhered to a specially shaped thin copper film sputtered on a quartz plate. By passing direct current (DC) through the film, the temperature of the cube can be varied, resulting in changing the cube's permittivity and shifting the absorption resonance frequency. The frequency increases on heating and the absorption is over 99% throughout the tuning range. This method for constructing miniaturized tunable MPAs compares favorably to bulky alternative designs. It also provides a versatile route to broaden the absorption bandwidth and potentially expand the range of applications such as metasurfaces and cloaking devices utilizing nonuniform permittivity absorbers produced by temperature gradients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app