Add like
Add dislike
Add to saved papers

Accurate and spectral efficient channel estimation using inter-block precoding and superimposed pilots in optical OFDM systems.

Optics Express 2017 September 19
A new inter-block precoding-based channel estimation (CE) scheme is proposed and experimentally demonstrated in an optical OFDM system with a superimposed pilot (SP). The proposed inter-block precoding scheme targets on eliminating the statistical mean of the unknown data symbols, and thereby improves the performance of SP-aided CE. We investigate the impact that both the precoding matrix and SP have on the system performance, from which we obtain the optimum value of signal-to-pilot power ratio (SPR) as well as the block length. We show through simulations and experiments that the proposed CE scheme, in comparison with the conventional preamble based scheme, has the advantage of entailing a much smaller overhead size, while offering similar performance in terms of CE accuracy and bit-error ratio (BER) performances. Furthermore, the proposed precoding scheme has no limit to the design of SP, and thus is applicable for any periodic pilots.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app