Add like
Add dislike
Add to saved papers

Compact and stable real-time dual-wavelength digital holographic microscopy with a long-working distance objective.

Optics Express 2017 October 3
We propose a compact dual wavelength digital holographic Microscopy (DHM) based on a long working distance objective, which enabling quantitative phase imaging of opaque samples with extended measurement range in one shot. The compactness of the configuration is achieved by constructing a miniature modified Michelson interferometer between the objective and the sample, and as a result it provides higher temporal stability than conventional dual wavelength DHM. In the setup, the propagation directions of two reference beams of different wavelengths can be independently adjusted, and thus two off axis interferograms having orthogonal fringe directions can be simultaneously captured through a monochrome CCD camera. The unambiguous vertical measurement range in optical path length is extended to 8.338 μm, the length of a synthetic wavelength, by selecting two wavelengths with a gap of 52 nm. The capability of the proposed setup is demonstrated with measurements of a standard 1.8 μm height step as well as a moving micro staircase structure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app