Add like
Add dislike
Add to saved papers

Improved TKM-TR methods for PAPR reduction of DCO-OFDM visible light communications.

Optics Express 2017 October 3
The dc-biased optical orthogonal frequency division multiplexing (DCO-OFDM) system is experimentally demonstrated as an appealing candidate in future visible light communication (VLC) system. However, the intrinsic high PAPR drawback that the DCO-OFDM system suffers from still needs to be addressed and few effective approach has been found so far. To deal with this problem, in this paper, the tone reservation (TR) technique based the time domain kernel matrix (TKM-TR) schemes for reducing the PAPR are studied and applied to DCO-OFDM system. Aiming at the drawback of its severe tailing in previous TKM-TR schemes, first an improved TKM-TR scheme is proposed, in which the peak regrowth caused by severe tailing is eliminated by optimizing the scaling factors. In addition, considering the clipping ratio (CR) value in TKM-TR scheme is greatly related to the PAPR reduction performance, an extensively used heuristic global optimization algorithm, the particle swarm optimization (PSO) method is employed in TKM-TR to obtain a better CR for more PAPR reduction. Simulation results show that the improved TKM-TR scheme can efficiently address the tailing problem in previous TKM-TR schemes and achieve better PAPR reduction. Moreover, due to the powerful searching ability, PSO based TKM-TR scheme achieves more PAPR reduction and lower bit error rate (BER).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app