Add like
Add dislike
Add to saved papers

Localized terahertz electromagnetically-induced transparency-like phenomenon in a conductively coupled trimer metamolecule.

Optics Express 2017 October 3
We experimentally investigate the terahertz (THz) electromagnetically-induced transparency (EIT)-like phenomenon in a metamolecule (MM) of three-body system. This system involves a couple of geometrically identical split-ring resonators (SRRs) in orthogonal layout conductively coupled by a cut-wire resonator. Such a three-body system exhibits two frequency response properties upon to the polarization of incident THz beam: One is the dark-bright-bright layout to the horizontally polarized THz beam, where there is no EIT-like effect; the other is bright-dark-dark layout to the vertically polarized THz beam, where an EIT-like effect is observable. The transparency window can be tuned from 0.71 THz to 0.74 THz by the displacement of cut-wire inside the trimer MM. A maximum of 7.5 ps group delay of THz wave is found at the transparent window of 0.74 THz. When the cut-wire moved to the mid-point of lateral-side of SRR, the EIT-like phenomenon disappears, this leads to a localized THz slow-light effect. The distribution of surface currents and electric energy reveals that the excited inductive-capacitive (LC) oscillation of bright-SRR dominates the high frequency side-mode, which is isolated to the displacement of cut-wire resonator. However, the low frequency side-mode originates from the constructive hybridization of LC resonance in dark-SRR coupled with a localized S-shaped dipole oscillator, which is tunable by the displacement of cut-wire. As a consequence, the group delay as well as the spectral configuration of transparency window can be manipulated by tuning one side-mode while fixing the other. Such an experimental finding reveal the EIT-like effect in a conductively coupled three-body system and manifests a novel approach to achieve tunable THz slow-light device.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app