Add like
Add dislike
Add to saved papers

Sub-picosecond laser damage growth on high reflective coatings for high power applications.

Optics Express 2017 October 17
Growth of laser damage on High Reflection (HR) thin film coatings is investigated at the wavelength of 1.030µm in the sub-picosecond regime. An experimental laser damage setup in a pump / probe configuration is used to study the growth behavior of engineered damage sites as well as laser damage sites. Results demonstrate that engineered sites and laser damage sites grow identically which indicates that the growth phenomenon is intrinsic to materials and stack design. In order to analyze the experimental results, we have developed a numerical model to simulate growth. Using FEM simulations, we demonstrate that growth is governed by the evolution of the electric field distribution in the mirror stack under the successive laser shots, which is supported by time-resolved observations of damage growth events. Eventually the results are compared to laser damage observations made on of full scale PETAL mirrors, which fully support the approach.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app