Add like
Add dislike
Add to saved papers

Multi-subcarrier flexible bit-loading enabled capacity improvement in meshed optical networks with cascaded ROADMs.

Optics Express 2017 October 17
We propose to use adaptive bit loading based on time-domain hybrid QAM (TDHQ) to maximize the capacity of subcarrier-multiplexing (SCM) systems in meshed optical networks with cascaded reconfigurable optical add and drop multiplexers (ROADMs). Note that the capacity is defined as the achievable net bit rate at the soft-decision FEC threshold of BER = 2 × 10-2 in this work. The capacity improvement is first numerically and experimentally demonstrated in a 4-subcarrier SCM system with an aggregate symbol rate of 34.94 Gbaud. Compared with the conventional SCM system using uniform standard QAM, the proposed system can achieve an average capacity increase of 31.75% and 26.1% over various link conditions in simulations and experiments, respectively. Furthermore, we demonstrate that the proposed SCM system can better approach the channel capacity in the presence of narrow inline optical filtering. An average capacity improvement of 7.59% is also reported over all 17 ROADMs cases from 1 to 17 by simulations at OSNR = 21 dB, compared with its single carrier counterpart using TDHQ.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app