Add like
Add dislike
Add to saved papers

Effects of imperfect elements on resolution and sensitivity of quantum metrology using two-mode squeezed vacuum state.

Optics Express 2017 October 17
It has been demonstrated that using two-mode squeezed vacuum state for phase estimation can break the Heisenberg limit. Our results reveal that the two-mode squeezed vacuum state is also applied to the optical rotation angle measurement. In our scheme, the resolution and sensitivity of the optical rotation angle signal are the same as the case of phase estimation. For the parameter estimation, phase or rotation angle, we discuss the influences of several imperfect factors on the resolution and sensitivity. First, the effect that the upper limit of photon-number resolving has on the maximum amount of available quantum Fisher information has been analyzed. Then, we have also studied the impacts of both the transmission efficiency in the transmission process and the detection efficiency on the detection results. Finally, conditions where all of the above imperfect elements are taken into account at the same time have also been explored. Additionally, other imperfect factors such as squeezing efficiency and dark counts are briefly discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app