Add like
Add dislike
Add to saved papers

Integrated waveguide PIN photodiodes exploiting lateral Si/Ge/Si heterojunction.

Optics Express 2017 August 8
Germanium photodetectors are considered to be mature components in the silicon photonics device library. They are critical for applications in sensing, communications, or optical interconnects. In this work, we report on design, fabrication, and experimental demonstration of an integrated waveguide PIN photodiode architecture that calls upon lateral double Silicon/Germanium/Silicon (Si/Ge/Si) heterojunctions. This photodiode configuration takes advantage of the compatibility with contact process steps of silicon modulators, yielding reduced fabrication complexity for transmitters and offering high-performance optical characteristics, viable for high-speed and efficient operation near 1.55 μm wavelengths. More specifically, we experimentally obtained at a reverse voltage of 1V a dark current lower than 10 nA, a responsivity higher than 1.1 A/W, and a 3 dB opto-electrical cut-off frequency over 50 GHz. The combined benefits of decreased process complexity and high-performance device operation pave the way towards attractive integration strategies to deploy cost-effective photonic transceivers on silicon-on-insulator substrates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app