Add like
Add dislike
Add to saved papers

Alleviation of Cr(VI)-induced oxidative stress in maize (Zea mays L.) seedlings by NO and H 2 S donors through differential organ-dependent regulation of ROS and NADPH-recycling metabolisms.

Chromium (Cr) contamination in soil is a growing concern in relation to sustainable agricultural production and food safety. Nitric oxide (NO) and, more recently, hydrogen sulfide (H2 S) are considered to be new signalling molecules with biotechnological applications in the agronomical sector. Using 9-day-old maize (Zea mays) seedlings exposed to 200μM Cr(VI), the potential mitigating effects of exogenous NO and H2 S on chromium-induced stress in maize seedlings were investigated in roots, cotyledons and coleoptiles. Analysis of Cr content, lipid peroxidation, antioxidant enzymes (catalase and superoxide dismutase isozymes), peroxisomal H2 O2 -producing glycolate oxidase and the main NADPH-regenerating system revealed that chromium causes oxidative stress, leading to a general increase in these activities in coleptiles and roots, with the latter organ being the most affected. However, cotyledons behaved in an opposite manner. Moreover, exogenous applications of NO and H2 S to Cr-stressed maize seedlings triggered a significant response, involving the virtual restoration of the values for all these activities to those observed in unstressed seedlings, although their specific impact on ROS and NADPH-recycling metabolisms depends on the seedling organ involved. Taken together, the data indicate that gas transmitters, NO and H2 S, which act as a defence against the negative effects of hexavalent chromium contamination, are alternative compounds with potential biotechnological applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app