Add like
Add dislike
Add to saved papers

Effect of oil structure on cyclodextrin-based Pickering emulsions for bupivacaine topical application.

Cyclodextrins (CDs) coupled with oils forms an insoluble inclusion complex that is able to adsorb to the interface between oils and aqueous phases; it thereby stabilizes Pickering emulsions. Three types of oils (triglyceride, linear chain oil, and ring-structured oil) were chosen to work with CDs to prepare bupivacaine (BPC)-encapsulated Pickering emulsions. We also investigated the relationship between oils and CDs; as well as their influences on stability, drug-releasing capability and skin permeability. Particle sizes and microstructures were determined by dynamic light scattering and scanning electron microscopy, respectively. In vitro drug release studies and in vitro skin permeation studies were evaluated by using Franz diffusion model. Particle sizes of all Pickering emulsions were larger than 1μm, and the morphology was spherical and covered with rough surfaces. BPC was released over an extended period, and the releasing ratios from Pickering emulsions were only 12.2%-23.1% after 48h. In skin permeation studies, compared with other formulations, a formula involved with ring-structured oil allowed the highest permeation amount through skin. However, after 24h of exposure, formulation operated with linear chain oil showed the highest skin-retaining amount. These results suggest that Pickering emulsions could regulate the target site of skin depending on various types of oil used.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app