Add like
Add dislike
Add to saved papers

Independently Tuning the Biochemical and Mechanical Properties of 3D Hyaluronan-Based Hydrogels with Oxime and Diels-Alder Chemistry to Culture Breast Cancer Spheroids.

Biomacromolecules 2017 December 12
For native breast cancer cell growth to be mimicked in vitro as spheroids, a well-defined matrix that mimics the tumor microenvironment is required. Finding a biomimetic material for 3D cell culture other than Matrigel has challenged the field. Because hyaluronan is naturally abundant in the tumor microenvironment and can be chemically modified, we synthesized a hyaluronan (HA) hydrogel with independently tunable mechanical and chemical properties for 3D culture of breast cancer cells. By modifying HA with distinct bioorthogonal functional groups, its mechanical properties are controlled by chemical cross-linking via oxime ligation, and its biochemical properties are controlled by grafting bioactive peptides via Diels-Alder chemistry. A series of hydrogels were screened in terms of stiffness and peptide composition for cancer spheroid formation. In the optimal hydrogel formulation, the 3D breast cancer spheroids showed decreased drug diffusion into their core and upregulation of cellular multidrug-resistant efflux pumps similar to what is observed in drug-resistant tumors. Our results highlight the potential of these tunable and well-defined gels in drug screening assays.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app