Add like
Add dislike
Add to saved papers

Modulating the electronic and optical properties of monolayer arsenene phases by organic molecular doping.

Nanotechnology 2017 December 9
Recently, arsenene monolayer structure of the arsenic with two phases has displayed semiconducting behavior. We have systematically investigated the electronic and optical properties of single-layer arsenene with two types of functionalized organic molecules; an electrophilic molecule [tetracyanoquinodimethane (TCNQ)] and a nucleophilic molecule [tetrathiafulvalene (TTF)], as an electron acceptor and electron donor, respectively. The interfacial charge transfer between the arsenene monolayer and TCNQ/TTF molecules extensively reduces the band gap of arsenene and accordingly resulted in a p- or n-type semiconducting behavior, respectively. We have also performed the interfacial charge transfer from organic molecules to monolayer arsenene and vice versa. The interfacial surface molecular modification has established an efficient way to develop the light harvesting of arsenene in different polarization directions. Our theoretical investigation suggests that such n- and p-type arsenene semiconductors would broaden the applications in the field of nanoelectronic and optoelectronic devices such as photodiodes and it is also useful for constructing functional electronic systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app