Add like
Add dislike
Add to saved papers

1,2-Fluorine Radical Rearrangements: Isomerization Events in Perfluorinated Radicals.

Devising effective degradation technologies for perfluoroalkyl substances (PFASs) is an active area of research, where the molecular mechanisms involving both oxidative and reductive pathways are still elusive. One commonly neglected pathway in PFAS degradation is fluorine atom migration in perfluoroalkyl radicals, which was largely assumed to be implausible because of the high C-F bond strength. Using density functional theory calculations, it was demonstrated that 1,2-F atom migrations are thermodynamically favored when the fluorine atom migrated from a less branched carbon center to a more branched carbon center. Activation barriers for these rearrangements were within 19-29 kcal/mol, which are possible to easily overcome at elevated temperatures or in photochemically activated species in the gas or aqueous phase. It was also found that the activation barriers for the 1,2-F atom migration are lowered as much as by 10 kcal/mol when common oxidative degradation products such as HF assisted the rearrangements or if the resulting radical center was stabilized by vicinal π-bonds. Natural bond orbital analyses showed that fluorine moves as a radical in a noncharge-separated state. These findings add an important reaction to the existing knowledge of mechanisms for PFAS degradation and highlights the fact that 1,2-F atom shifts may be a small channel for isomerization of these compounds, but upon availability of mineralization products, this isomerization process could become more prominent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app