Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Comparative Assessment of Computational Methods for Free Energy Calculations of Ionic Hydration.

Experimental observations for ionic hydration free energies are highly debated mainly due to the ambiguous absolute hydration free energy of proton, ΔGhyd * (H+ ). Hydration free energies (HFEs) of the 112 singly charged ions in the Minnesota solvation database were predicted by six methods with explicit and implicit solvent models, namely, thermodynamic integration (TI), energy representation module (ERmod), three-dimensional reference interaction site model (3D-RISM), and continuum solvation models based on the quantum mechanical charge density (SMD) and on the Poisson-Boltzmann (PB) and generalized Born (GB) theories. Taking the solvent Galvani potential of water into account, the resulting real HFEs from TI calculations for the generalized Amber force field (GAFF) modeled ions best match the experiments based on ΔGhyd * (H+ ) = -262.4 kcal/mol (Randles Trans. Faraday Soc . 1956 , 52 , 1573 - 1581 ), in agreement with our previous work on charged amino acids (Zhang et al. J. Phys. Chem. Lett. 2017 , 8 , 2705 - 2712 ). The examined computational methods show an accuracy of ∼7 kcal/mol for the GAFF-modeled ions, except for SMD with a higher accuracy of ∼4 kcal/mol. A biased deficiency in modeling anionic compounds by GAFF is observed with a larger standard deviation (SD) of 9 kcal/mol than that for cations (SD ∼ 4 kcal/mol). The relatively cheap ERmod and 3D-RISM methods reproduce TI results with good accuracy, although ERmod yields a systematic underestimation for cations by 9 kcal/mol; PB and GB generate relative (but not absolute) HFEs comparable to the TI predictions. Computational accuracy is found to be more limited by the accuracy of force fields rather than the models themselves.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app