Add like
Add dislike
Add to saved papers

Limited activation of the intrinsic apoptotic pathway plays a main role in amyloid-β-induced apoptosis without eliciting the activation of the extrinsic apoptotic pathway.

Amyloid-β (Aβ), a main pathogenic factor of Alzheimer's disease (AD), induces apoptosis accompanied by caspase activation. However, limited caspase activation and the suppression of the intrinsic apoptotic pathway (IAPW) are frequently observed upon Aβ treatment. In this study, we investigated whether these suppressive effects of Aβ can be overcome; we also examined the death-related pathways. Single treatments of cells with Aβ42 for up to 48 h barely induced caspase activation. In cells treated with Aβ42 twice for 2 h followed by 22 h (2+22 h) or for longer durations, the apoptotic protease activating factor-1 (Apaf-1) apoptosome was formed and caspases-3 and -9 were activated to a certain extent, suggesting the activation of the IAPW. However, the Aβ42-induced activation of the IAPW differed from that induced by treatment with other agents, such as staurosporine (STS) in that lower amounts of cytochrome c were released from the mitochondria, the majority of procaspase-9 in the Apaf-1 complex was not processed and caspase-3 was activated to a lesser extent in the peptide-treated cells. Thus, it seemed that the IAPW was not fully activated by Aβ42. The 30- and 41/43-kDa fragments derived from procaspase-8 were detected, which appear to be produced through the IAPW without death-inducing signaling-complex (DISC) formation, a key feature of the extrinsic apoptotic pathway (EAPW). Bid cleavage was observed only after caspase-3 activity reached its maximal levels, suggesting that the cleavage may contribute in a limited capacity to the amplification process of the IAPW in the Aβ-treated cells. Taken together, our data suggest that the IAPW, albeit functional only to a limited extent, plays a major role in Aβ42-induced apoptosis without the EAPW.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app