Add like
Add dislike
Add to saved papers

RACK1 silencing attenuates renal fibrosis by inhibiting TGF-β signaling.

The receptor for activated C-kinase 1 (RACK1) is a member of the WD40-repeat family of proteins and has been reported to be implicated in the development of liver fibrosis. However, the role of RACK1 in renal fibrosis remains unclear. Therefore, in this study, we investigated the effects of RACK1 on transforming growth factor-β1 (TGF-β1)-treated human proximal tubular epithelial cells and aimed to elucidate the possible mechanisms responsible for its anti-fibrotic effects. Our results revealed that RACK1 was highly expressed in the renal fibrotic tissues and TGF-β1-treated HK-2 cells. RACK1 silencing inhibited TGF-β1‑induced α-smooth muscle actin and connective tissue growth factor expression in the HK-2 cells. Furthermore, RACK1 silencing inhibited the expression of phosphorylated Smad3 in the TGF-β1-treated HK-2 cells. To the best of our knowledge, these data demonstrate for the first time the role of RACK1 in renal fibrosis. The present findings indicate that RACK1 silencing attenuates renal fibrosis by suppressing the activation of TGF-β1/Smad3 signaling pathway in HK-2 cells. Thus, RACK1 may serve as a novel regulator of renal fibrosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app