Add like
Add dislike
Add to saved papers

Fitting structure to function in gene regulatory networks.

Cascades of transcriptional regulation are the common source of the forward drive in all developmental systems. Increases in complexity and specificity of gene expression at successive stages are based on the collaboration of varied combinations of transcription factors already expressed in the cells to turn on new genes, and the logical relationships between the transcription factors acting and becoming newly expressed from stage to stage are best visualized as gene regulatory networks. However, gene regulatory networks used in different developmental contexts underlie processes that actually operate through different sets of rules, which affect the kinetics, synchronicity, and logical properties of individual network nodes. Contrasting early embryonic development in flies and sea urchins with adult mammalian hematopoietic development from stem cells, major differences are seen in transcription factor dosage dependence, the silencing or damping impacts of repression, and the impact of cellular regulatory history on the parts of the genome that are accessible to transcription factor action in a given cell type. These different features not only affect the kinds of models that can illuminate developmental mechanisms in the respective biological systems, but also reflect the evolutionary needs of these biological systems to optimize different aspects of development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app