Add like
Add dislike
Add to saved papers

Kinetics of volatile impurity removal from silicon by electron beam melting for photovoltaic applications.

A full domain control model is established for impurity transportation in the liquid phase, gas-liquid interface and gas phase of silicon to analyze the dynamic mechanics of impurity removal. The results show that the overall mass transfer coefficient mainly depends on the temperature and the chamber pressure. Its value increases with the increase of temperature or the decrease of chamber pressure. Under the same melting condition, the order of the overall mass transfer coefficients for P, Al and Ca is kP > kAl > kCa , indicating that P is easier to remove by evaporation. Mass transfer in the gas phase is the rate-controlling step for volatile impurity removal at the temperature above the melting point of silicon. The rate-controlling step transits to evaporation on the gas-liquid interface then to mass transfer in the liquid boundary layer as the temperature increases. During electron beam melting, the removal of P is controlled by both evaporation on the gas-liquid interface and mass transfer in the liquid boundary layer, and the removal of Al and Ca is controlled by evaporation on the gas-liquid interface.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app