Add like
Add dislike
Add to saved papers

Long non-coding HCG18 promotes intervertebral disc degeneration by sponging miR-146a-5p and regulating TRAF6 expression.

Scientific Reports 2017 October 17
Intervertebral disc degeneration (IDD) is associated with the deterioration of nucleus pulposus (NP) cells due to hypertrophic differentiation and calcification. Emerging studies have shown that long noncoding RNAs (lncRNAs) play critical roles in the development of IDD. Using bioinformatics prediction, we hereby sought to identify the lncRNAs that regulate the expression of microRNA-146a-5p (miR-146a-5p), an IDD-related inflammatory factor. Our study demonstrated that lncRNA HCG18 acted as an endogenous sponge to down-regulate miR-146a-5p expression in the NP cells by directly binding to miR-146a-5p. In addition, HCG18 expression was up-regulated in the patients with IDD, bulging or herniated discs, and its level was positively correlated with the disc degeneration grade. In vitro, miR-146a-5p up-regulation HCG18 retarded the growth of NP cells by decreasing S phase of cell cycle, inducing cell apoptosis, recruitment of macrophages and hypercalcification. Conversely, down-regulation of miR-146a-5p exerted opposite effects. Furthermore, we elucidated that TRAF6, a target gene by miR-146a-5p, was modulated by HCG18 expression. Restore of TRAF6 expression by virus infection reserved the effect of HCG18 on the NP cells. Altogether, our data indicated that HCG18 suppressed the growth of NP cells and promoted the IDD development via the miR-146a-5p/TRAF6/NFκB axis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app