Add like
Add dislike
Add to saved papers

Differences in oxidative metabolism modulation induced by ischemia/reperfusion between trained and untrained individuals assessed by NIRS.

Endurance training is associated with skeletal muscle adaptations that regulate the oxidative metabolism during ischemia/reperfusion. The aim of this study was to noninvasively assess in vivo differences in the oxidative metabolism activity during ischemia/reperfusion between trained and untrained individuals, using near infrared spectroscopy (NIRS) combined with a vascular occlusion test (VOT) technique (NIRS-VOT). Sixteen untrained (26.3 ± 5.1 year) and seventeen trained (29.4 ± 4.9 year) healthy young adult men were submitted to a VOT (2 min baseline, 5 min occlusion, and 8 min reperfusion). Oxygen utilization was estimated from the area under the curve of the NIRS-derived deoxyhemoglobin [HHb] signal during occlusion (AUCocc). Muscle reperfusion was derived from the area above the curve (AACrep) of the [HHb] signal after cuff release. The AUCocc of the untrained participants (21010 ± 9553 % · s) was significantly larger than the AUCocc of their trained counterparts (12320 ± 3283 % · s); P  = 0.001). The AACrep of the untrained participants (5928 ± 3769 % · s) was significantly larger than the AACrep of the trained participants (3745 ± 1900 % · s; P  = 0.042). There was a significant correlation between AUCocc and AACrep ( r  = 0.840; P  = 0.001). NIRS assessment of oxidative metabolism showed that trained individuals are more efficient in shifting between oxidative and anaerobic metabolism in response to ischemia and reperfusion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app