Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Single Molecule Arrays for ultra-sensitive detection of rat cytokines in serum.

Rats are used as animal models for many human diseases. Cytokines can serve as biomarkers indicative of these diseases or disease states. Techniques for measuring cytokine expression levels often do not provide the sensitivity needed to measure these biomarkers in biological fluids because the concentrations of many cytokines are below the detection limits of conventional methods. In this paper, we present ultra-sensitive digital immunoassays using Single Molecule Arrays (Simoa) for seven rat cytokines: TNF-α, IL-10, IL-17F, GM-CSF, IFN-γ, IL-4, and IL-1α. These ultra-sensitive immunoassays have limits of detection (LODs) in the femtomolar range and provide the ability to measure rat cytokines in serum below the LODs of conventional immunoassays. We also measured these cytokines in healthy rat serum to obtain baseline levels. The ability to measure cytokines present at low concentrations in rat serum will facilitate future studies of disease using rats as animal models.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app