Add like
Add dislike
Add to saved papers

Relating physicochemical properties of alginate-HMP complexes to their performance as drug delivery systems.

This study aims to analyze the effect of physicochemical properties of alginate-high methoxyl pectin (HMP) complexes on their performance as drug delivery systems. Rheology, textural properties and swelling behavior of alginate-HMP complexes were determined. HMP alone showed weak gelling ability. As ratio of alginate increased, gel capability, hardness and adhesiveness of gels increased, but swelling rate decreased. Bovine serum albumin (BSA) was used as a model drug and entrapped in the alginate-HMP beads. Morphology of beads was correlated with adhesiveness. Drug loading content and encapsulation efficiency were related to electrostatic interactions between BSA and alginate-HMP complexes. Drug release profiles were correlated with both texture and swelling properties of alginate-HMP complexes and morphology of beads in simulated gastric fluids, while release in simulated intestinal fluids was affected by drug loading content. This study gives enlightenment that pre-selection of encapsulation materials may be achieved prior to encapsulation based on physicochemical properties of materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app