Add like
Add dislike
Add to saved papers

MethRaFo: MeDIP-seq methylation estimate using a Random Forest Regressor.

Bioinformatics 2017 November 2
Motivation: Profiling of genome wide DNA methylation is now routinely performed when studying development, cancer and several other biological processes. Although Whole genome Bisulfite Sequencing provides high-quality methylation measurements at the resolution of nucleotides, it is relatively costly and so several studies have used alternative methods for such profiling. One of the most widely used low cost alternatives is MeDIP-Seq. However, MeDIP-Seq is biased for CpG enriched regions and thus its results need to be corrected in order to determine accurate methylation levels.

Results: Here we present a method for correcting MeDIP-Seq results based on Random Forest regression. Applying the method to real data from several different tissues (brain, cortex, penis) we show that it achieves almost 4 fold decrease in run time while increasing accuracy by as much as 20% over prior methods developed for this task.

Availability and implementation: MethRaFo is freely available as a python package (with a R wrapper) at https://github.com/phoenixding/methrafo.

Contact: [email protected].

Supplementary information: Supplementary data are available at Bioinformatics online.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app