Add like
Add dislike
Add to saved papers

Tet1 facilitates hypoxia tolerance by stabilizing the HIF-α proteins independent of its methylcytosine dioxygenase activity.

Nucleic Acids Research 2017 December 16
Because of the requirement of oxygen (O2) to produce energy, aerobic organisms developed mechanisms to protect themselves against a shortage of oxygen in both acute status and chronic status. To date, how organisms tolerate acute hypoxia and the underlying mechanisms remain largely unknown. Here, we identify that Tet1, one member of the ten-eleven translocation (TET) family of methylcytosine dioxygenases, is required for hypoxia tolerance in zebrafish and mice. Tet1-null zebrafish and mice are more sensitive to hypoxic conditions compared with their wild-type siblings. We demonstrate that Tet1 stabilizes hypoxia-inducible factor α (HIF-α) and enhances HIF-α transcription activity independent of its enzymatic activity. In addition, we show that Tet1 modulates HIF-2α and HIF-1α through different mechanisms. Tet1 competes with prolyl hydroxylase protein 2 (PHD2) to bind to HIF-2α, resulting in a reduction of HIF-2α hydroxylation by PHD2. For HIF-1α, however, Tet1 has no effect on HIF-1α hydroxylation, but rather it appears to stabilize the C-terminus of HIF-1α by affecting lysine site modification. Furthermore, we found that Tet1 enhances rather than prevents poly-ubiquitination on HIF-α. Our results reveal a previously unrecognized function of Tet1 independent of its methylcytosine dioxygenase activity in hypoxia signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app