Add like
Add dislike
Add to saved papers

Real and visually-induced body inclination differently affect the perception of object stability.

The prediction of object stability on earth requires the establishment of a perceptual frame of reference based on the direction of gravity. Across three experiments, we measured the critical angle (CA) at which an object appeared equally likely to fall over or right itself. We investigated whether the internal representation of the gravity direction, biased by either simulated tilt (rotating visual surround) or real body tilt situations, influences in a similar fashion the judgment of stability. In the simulated tilt condition, the estimated CA and the perceived gravity are both deviated in the same direction. In the real tilt condition, the orientation of the body affects the perception of gravity direction but has no effect on the estimated CA. Results suggest that people differently weigh gravity direction information provided by visual motion and by visual polarity cues for estimating the stability of objects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app