Add like
Add dislike
Add to saved papers

Description of deep saturated excitation multiphoton microscopy for super-resolution imaging.

Here we recount the standard two-level model that describes saturated excitation (SAX) in multiphoton microscopy (MPM), a new technique for super-resolution fluorescence microscopy in scattering tissue, which requires no special chemistry and only simple modifications to a commercial MPM microscope. We use the model to study conditions required for improvements in MPM SAX resolution and experimental implementation strategies. Simulation results find zeros, or nodes, in the frequency response, which generate highly irregular point-spread functions (PSFs), such as rings and ripples, that contain spatial frequency content >3× larger than allowed by diffraction. These PSFs are a direct result of zeros in the frequency response of saturated fluorophores under specific excitation conditions. The impact on image quality is discussed using simulations of targets imaged with SAX PSFs. Further, we explore engineering sets of irregular PSFs by varying the excitation power and reconstructing super-resolution images from the set of captured images.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app