Add like
Add dislike
Add to saved papers

Decomposition of the total wave aberration in generalized optical systems.

The increasing use of freeform optical surfaces raises the demand for optical design tools developed for generalized systems. In the design process, surface-by-surface aberration contributions are of special interest. The expansion of the wave aberration function into field- and pupil-dependent coefficients is an analytical method used for that purpose. An alternative numerical approach utilizing data from the trace of multiple ray sets is proposed. The optical system is divided into segments of the optical path measured along the chief ray. Each segment covers one surface and the distance to the subsequent surface. Surface contributions represent the change of the wavefront that occurs due to propagation through individual segments. Further, the surface contributions are divided with respect to their phenomenological origin into intrinsic induced and transfer components. Each component is determined from a separate set of rays. The proposed method does not place any constraints on the system geometry or the aperture shape. However, here we concentrate on near-circular apertures and specify the resulting wavefront error maps using an expansion into Zernike polynomials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app